Круг стальной диаметр 1 мм, марка стали 20ХГМ

  • Модель: 503
  • Производитель: ПКФ Пром Тех
  • Наличие: Есть в наличии
ПКФ Пром Тех

Краткое описание:

Купить круг стальной диаметр 1 мм, марка стали 20ХГМ Вы можете обратившись по указанным телефонам или отправив свою потребность на электронную почту. Осуществляем доставку своим автотранспортом по территории всей России, а так же в страны СНГ. Возможна прямая экспортная поставка продукции. Мар..

Компания «Промышленные Технологии» гарантирует своим клиентам:
  • Высокое качество предлагаемой продукции и соблюдение сроков при комфортной для заказчика стоимости;
  • Выполнение полного объема и в срок взятых на себя обязательств по поставке материалов и изготовлении продукции;
  • Индивидуальный подход к каждому клиенту;
  • Профессиональный и быстрый расчет необходимого материала;
  • Оперативный расчет стоимости логистических услуг независимо от места доставки;
  • Гарантия качества на все поставляемые материалы;
  • Гибкая система оплаты
Купить круг стальной диаметр 1 мм, марка стали 20ХГМ Вы можете обратившись по указанным телефонам или отправив свою потребность на электронную почту.

Осуществляем доставку своим автотранспортом по территории всей России, а так же в страны СНГ. Возможна прямая экспортная поставка продукции.

Марка: 20ХГНМ Класс: Сталь конструкционная легированная
Использование в промышленности: Для изготовления деталей, подвергающихся высоким вибрационным и динамическим нагрузкам.
Химический состав в % стали 20ХГНМ
C 0,18 - 0,23
CSiMnNiSPCrMoFe100%Chart created using amCharts library
Si 0,17 - 0,37
Mn 0,7 - 1,1
Ni 0,4 - 0,7
S до 0,035
P до 0,035
Cr 0,4 - 0,7
Mo 0,15 - 0,25
Fe ~97
Зарубежные аналоги марки стали 20ХГНМ
США 8617, 8620, 8620H, 8620RH, G86170, G86200, H86170, H86200, J11442, K12147
Германия 1.6523, 21NiCrMo2, 21NiCrMo2-2
Япония SNCM220, SNCM220H
Франция 20NCD2, 20NiCrMo2, 22NCD2
Англия 20NiCrMo2-2, 805H20, 805M20, 806M20
Евросоюз 1.6523, 20MoCr2-2, 20NiCrMo2, 20NiCrMo2-2, 20NiCrMo2KD
Италия 20NiCrMo2
Испания 20NiCrMo2, 20NiCrMo2-2, 20NiCrMo3-1
Китай 20CrNiMo, 20CrNiMoH, G20CrNiMo
Швеция 2506
Польша 20HNM, 20HNMA
Финляндия 21NiCrMo2
Австралия 8617, 8617H, 8620, 8620H
Юж.Корея SNCM220, SNCM220H
Дополнительная информация и свойства
Термообработка: Закалка 860oC, масло, Отпуск 150 - 180oC, воздух,
Механические свойства стали 20ХГНМ при Т=20oС
Прокат Размер Напр. σв(МПа) sT (МПа) δ5 (%) ψ % KCU (кДж / м2)
1180-1570 930 7 590
Особенности электрошлаковой сварки стали марки 20ХГНМ (и подобных): для сварки среднелегированных сталей с низкой стойкостью против надрывов необходимо применять электроды с возможно более низкой температурой плавления. «Залечивание» несплошностей основного металла жидкотекучим металлом шва может в значительной мере ослабить или даже предупредить (при аустенитном металле шва) образование трещин в соединениях (табл. 9.24). Для уменьшения вероятности возникновения надрывов сварку следует выполнять на повышенном напряжении.

стей основного металла жидкотекучим металлом шва может в значительной мере ослабить или даже предупредить (при аустенитном металле шва) образование трещин в соединениях (табл. 9.24). Для уменьшения вероятности возникновения надрывов сварку следует выполнять на повышенном напряжении.

Таблица 9.24 (А. М. Макара и др.)
Электродная проволока Состав металла шва, % Число надрывов на шлифе
C Mn Si S P Cr Ni Mo
Св-08ХЗГ2СМ 0.15 0.95 0.47 0.015 0.019 2.19 0.35 0.3 5 — 6
20Х2МА 0.18 0.72 0.32 0.012 0.014 2.1 0.47 0.36 10 — 11
Св-10 НМ 0.1 0.8 0.25 0.020 0.02 0.68 0.78 0.51 12 — 14
Св-10НМ (ЭШП) 0.1 0.8 0.25 0.006 0.02 0.68 0.78 0.51 27 — 29
Св-10Х5М 0.1 0.68 0.28 0.014 0.026 4 0.33 0.62 2 — 3

Примечание. Сталь 20Х2МА, S = 110 мм.

Зона термического влияния в среднелегированных сталях в значительно большей степени, чем в низколегированных, подвержена образованию холодных трещин. Возникают они при повышенных жесткости сварных соединений и скорости их охлаждения (см. пп. 2.4 и 9.2). Для предупреждения холодных трещин в соединениях из среднелегированных сталей начальный участок шва или весь стык предварительно подогревают до 423-623 К (150- 350° С) и осуществляют высокий отпуск соединения непосредственно после окончания сварки. При сварке кольцевых швов из среднелегированных сталей холодные трещины могут образоваться не только на замыкающем участке, где действуют наиболее высокие временные напряжения растяжения, но и на рабочей части швов, если их выполняют на низкой погонной энергии. В этих случаях участок замыкания предварительно подогревают, а сварку ведут на повышенной погонной энергии. Особо жесткие конструкции нагревают перед сваркой в печи до 723-773 К (450-500° С) и непосредственно после окончания сварки, не позволяя им охладиться ниже температуры окончания бейнитного превращения, подвергают высокому отпуску для снятия сварочных напряжений.

Рассмотрим особенности электрошлаковой сварки среднелегированных сталей, связанные с процессами, протекающими в металле шва.

В отличие от основного металла, подвергающегося для получения высокой прочности и вязкости предварительной сложной металлургической, деформационной и термической обработке, металл шва испытывает только последующую нормализацию (закалку) и отпуск, иногда только отпуск. Вследствие этого обеспечение свойств металла шва, равноценных с основным металлом, в ряде случаев представляет сложную задачу.

Крупнокристаллическая столбчатая структура легированного металла шва при электрошлаковой сварке характеризуется ярко выраженной структурной неоднородностью, обусловленной химической неоднородностью, развивающейся в процессе кристаллизации шва. Обогащение межкристаллитных границ легирующими элементами может быть весьма значительным. В табл. 9.25 на основании экспериментальных данных, полученных микрорентгеноспектральным анализом, показана химическая микронеоднородность шва на некоторых среднелегированных сталях.

Таблица 9.25
Тип металла шва Термообработка Si Mn Cr Ni
Сгр Ст Сгр / Ст Сгр Ст Сгр / Ст Сгр Ст Сгр / Ст Сгр Ст Сгр / Ст
% % % %
25ХГСН Нет 1.07 0.73 1.17 1.53 1.16 1.32 1.42 1.11 1.28 1.64 1.4 1.17
20Х2ГСНВМ Нет 1.48 1.24 1.44 1.1
Закалка от 1173 К (900° С) 60 мин, низкий отпуск 1.46 1.25 1.20 1.1

Примечание. Сгр — концентрация элемента на границе, Ст — в теле зерна.

С увеличением содержания легирующих элементов повышается устойчивость аустенита, поэтому при охлаждении он распадается у межкристаллитных границ при более низкой температуре и в меньшей степени подвергается отпуску, чем в теле зерна. Последующая закалка с отпуском не устраняет полностью химической неоднородности и не может исключить ее влияния на ударную вязкость металла шва. Последняя зависит также от ширины ликвационных прослоек и размеров кристаллитов, которые при электрошлаковой сварке в 4-10 раз больше чем при дуговой или электронно-лучевой. Поэтому даже после закалки (нормализации) с отпуском не всегда удается поднять ударную вязкость высокопрочного металла шва до уровня основного металла. В среднелегированных сталях повышенной прочности в большинстве случаев перекристаллизация восстанавливает ударную вязкость металла швов до требуемого уровня. Представление о типичных структуре и свойствах металла шва дают табл. 9.26 и рис. 9.19.

Для повышения ударной вязкости необходимо выбирать оптимальное легирование металла шва или прибегать к специальным мерам. Весьма эффективны, например, ковка сварных соединений

или применение чистых по вредным примесям и газам основного и присадочного материалов. Так, например, ударная вязкость металла шва в закаленных соединениях из стали 35ХН3МФА, сваренных проволоками аналогичного состава, возрастает после ковки от 0,52 МДж/м2 (5,2 кгсм/см2) до 1,34 МДж/м2 (13,4 кгс х м/см2). На стали 25ХНЗМФ ударная вязкость закаленного металла шва составляет 0,89 МДж/м2 (8,9 кгс м/см2). Применение стали и присадочных материалов после электрошлакового переплава повышает ударную вязкость металла шва до 1,56 МДж/м2 (15,6 кгс.м/см2), а после дополнительной ковки - до 2,2 МДж/м2 (22 кгс.м/см2).

Задача получения требуемой ударной вязкости металла шва, в особенности при низких температурах, усложняется в тех случаях, когда невозможны нормализация или закалка сварного соединения. Для металла шва, не подвергнутого перекристаллизации и сохранившего первичную крупнокристаллическую столбчатую структуру, особенно важна благоприятная вторичная структура - высокая дисперсность частиц второй фазы и равномерность их распределения, отсутствие видманштеттовой структуры и ферритных оторочек по границам кристаллитов, чистота границ зерен и т. д. Получение такой структуры путем выбора рационального легирования шва дает заметное повышение его хладостойкости в состоянии после отпуска. Металл шва, например, типа ХГН и ХГНМ имеет низкую ударную вязкость в состоянии после отпуска уже при 253-243 К (-20 -30° С). Повышение содержания никеля, марганца или хрома до 1,8-3% в металле швов типа ХГН2М, Х2ГНМ, Х2Г2М позволяет получить требуемую его ударную вязкость при 233-213 К (-40 -60° С).

Важным преимуществом электрошлаковой сварки является возможность в больших пределах изменять ширину шва и таким образом увеличивать долю основного металла в металле швов и стойкость их против кристаллизационных трещин. Благодаря последнему обстоятельству при сварке среднелегированных сталей удается повышать содержание в шве углерода и легирующих элементов практически до уровня основного металла и получать равнопрочные соединения. При выборе присадочных материалов и режимов сварки необходимо учитывать, что с увеличением содержания углерода, серы и никеля технологическая прочность металла шва понижается. Практически не оказывает на нее влияния кремний (до 1%), хром (до 4%) и молибден (до 0,5%). Введение марганца в количестве 0,5-1,5% обычно повышает стойкость средне-легированного металла шва против кристаллизационных трещин (В. М. Семенов).

Общие характеристики
Применение Для изготовления деталей, подвергающихся высоким вибрационным и динамическим нагрузкам.
Размер 1 мм
Дополнительно

Нет отзывов о данном товаре.

Написать отзыв
Примечание: HTML разметка не поддерживается! Используйте обычный текст.
    Плохо           Хорошо